Using Soft CSPs for Approximating Pareto-Optimal Solution Sets

نویسندگان

  • Marc Torrens
  • Boi Faltings
چکیده

We consider constraint satisfaction problems where solutions must be optimized according to multiple criteria. When the relative importance of different criteria cannot be quantified, there is no single optimal solution, but a possibly very large set of Pareto-optimal solutions. Computing this set completely is in general very costly and often infeasible in practical applications. We consider several methods that apply algorithms for soft CSP to this problem. We report on experiments, both on random and real problems, that show that such algorithms can compute surprisingly good approximations of the Pareto-optimal set. We also derive variants that further improve the performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A full ranking method using integrated DEA models and its application to modify GA for finding Pareto optimal solution of MOP problem

This paper uses integrated Data Envelopment Analysis (DEA) models to rank all extreme and non-extreme efficient Decision Making Units (DMUs) and then applies integrated DEA ranking method as a criterion to modify Genetic Algorithm (GA) for finding Pareto optimal solutions of a Multi Objective Programming (MOP) problem. The researchers have used ranking method as a shortcut way to modify GA to d...

متن کامل

Solution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method

For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...

متن کامل

Global optimization for performance-based design using the Asymptotically Independent Markov Sampling Method

In this paper, we introduce a new efficient stochastic simulation method, AIMS-OPT, for approximating the set of globally optimal solutions when solving optimization problems such as optimal performance-based design problems. This method is based on Asymptotically Independent Markov Sampling (AIMS), a recently developed advanced simulation scheme originally proposed for Bayesian inference. Inst...

متن کامل

A Dual Algorithm for Approximating Pareto Sets in Convex Multi-criteria Optimization

We consider the problem of approximating the Pareto set of convex multicriteria optimization problems by a discrete set of points and their convex combinations. Finding the scalarization parameters that maximize the improvement in bound on the approximation error when generating a single Pareto optimal solution is a nonconvex optimization problem. This problem is solvable by enumerative techniq...

متن کامل

Approximating Pareto-Optimal Sets Using Diversity Strategies in Evolutionary Multi-Objective Optimization

Often the Pareto front of a multi-objective optimization problem grows exponentially with the problem size. In this case, it is not possible to compute the whole Pareto front efficiently and one is interested in good approximations. We consider how evolutionary algorithms can achieve such approximations by using different diversity mechanisms. We discuss some well-known approaches such as the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002